Những câu hỏi liên quan
Nhok_baobinh
Xem chi tiết
Lê Thế Minh
10 tháng 12 2017 lúc 11:26

Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)

\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)

\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)

                  \(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)

\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)

Bình luận (0)
Kiệt Nguyễn
Xem chi tiết
nub
21 tháng 4 2020 lúc 14:32

Đặt: \(M=\frac{1}{a+bc}+\frac{1}{b+ca}+\frac{1}{c+ab}=\Sigma_{cyc}\frac{a}{a^2+ab+bc+ca}\)

\(\Rightarrow M.\left(a+b+c\right)=3-\Sigma_{cyc}\frac{bc}{a^2+ab+bc+ca}\)

Đến đây t cần chứng minh:

 \(\frac{bc}{a^2+ab+bc+ca}+\frac{ca}{b^2+ab+bc+ca}+\frac{ab}{c^2+ab+bc+ca}\ge\frac{3}{4}\) (*)

Từ điều kiện ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\left(x,y,z>0\right)\)

\(\Rightarrow x+y+z=1\)

(*) \(\Leftrightarrow\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{y^2}{\left(x+y\right)\left(y+z\right)}+\frac{z^2}{\left(y+z\right)\left(z+x\right)}\ge\frac{3}{4}\)

Theo Cô-si: \(\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{9}{16}\left(x+y\right)\left(z+x\right)\ge\frac{3}{2}x\)

Nhứng phần kia tương tự

\(\Rightarrow\Sigma_{cyc}\frac{x^2}{\left(x+y\right)\left(z+x\right)}\ge\frac{3}{2}\left(x+y+z\right)-\frac{9}{16}\left[\left(x+y+z\right)^2+\left(xy+yz+zx\right)\right]\ge\frac{3}{4}\)

Lần trước làm không đúng hy vọng bây giờ gỡ lại được

Bình luận (0)
 Khách vãng lai đã xóa
Inequalities
21 tháng 4 2020 lúc 15:01

nub

Bạn suy ra dòng 8 mk chưa hiểu, giải kĩ cho mk đc ko

Bình luận (0)
 Khách vãng lai đã xóa
Inequalities
21 tháng 4 2020 lúc 15:22

À hiểu r nha bạn,

Bài làm thật xuất sắc!

Bình luận (0)
 Khách vãng lai đã xóa
Anh Phương
Xem chi tiết
Tạ Duy Phương
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Phạm Thành Đông
27 tháng 5 2021 lúc 18:08

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\left(a,b,c>0\right)\).

Với \(a,b>0\), ta có:

\(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\).

\(\Leftrightarrow\left(a^3-1\right)\left(a-1\right)\ge0\).

\(\Leftrightarrow a^4-a^3-a+1\ge0\).

\(\Leftrightarrow a^4-a^3+1\ge a\).

\(\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\).

\(\Leftrightarrow\sqrt{a^4-a^3+ab+2}\ge\sqrt{ab+a+1}\).

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a-1=0\Leftrightarrow a=1\).

Chứng minh tương tự (với \(b,c>0\)), ta được:

\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\left(2\right)\).

Dấu bằng xảy ra \(\Leftrightarrow b=1\).

Chứng minh tương tự (với \(a,c>0\)), ta được:

\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+a+1}}\left(3\right)\)

Dấu bằng xảy ra \(\Leftrightarrow c=1\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\left(4\right)\).

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki cho 3 số, ta được:

\(\left(1.\frac{1}{\sqrt{ab+a+1}}+1.\frac{1}{\sqrt{bc+b+1}}+1.\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le\)\(\left(1^2+1^2+1^2\right)\)\(\left[\frac{1}{\left(\sqrt{ab+a+1}\right)^2}+\frac{1}{\left(\sqrt{bc+b+1}\right)^2}+\frac{1}{\left(\sqrt{ca+c+1}\right)^2}\right]\).

\(\Leftrightarrow\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le3\left(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\).

Ta có:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{c}{abc+ac+c}+\frac{abc}{bc+b+abc}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{abc}{b\left(c+1+ac\right)}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{ac}{1+ac+c}+\frac{1}{1+ac+c}=1\).

Do đó:

\(\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\le3.1=3\).

\(\Leftrightarrow\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\le\sqrt{3}\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\)\(\sqrt{3}\)(điều phải chứng minh).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\).

Vậy \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\sqrt{3}\)với \(a,b,c>0\)và \(abc=1\).

\(+2\)nhé, không phải \(-2\)đâu.

Bình luận (0)
 Khách vãng lai đã xóa
Lê Minh Đức
Xem chi tiết
Triệu Tuyên Nhâm
16 tháng 5 2017 lúc 21:41

Ta có 

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}\)\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\)\(=\sqrt{\frac{a}{c+a}}.\sqrt{\frac{b}{c+b}}\)\(\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

Tương tự, ta có

\(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{b+ca}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{b+a}\right)}\)

Cộng vế theo vế của 3 bđt ta được đpcm

Bình luận (0)
Lê Văn Hoàng
Xem chi tiết
CBSCB
Xem chi tiết
Ngọc Vĩ
3 tháng 8 2016 lúc 9:56

Đề chính xác k bạn

Bình luận (0)
Vũ Trọng Nghĩa
4 tháng 8 2016 lúc 0:02

với x,y >0 ta có :   \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)..\)

Áp dụng bất đẳng thức trên được: 

\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+1\right)+\left(a+1\right)}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{abc}{ab+abc}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\left(1\right).\)( vì abc = 1 ) 

Chứng minh tương tự ta được : \(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right)\left(2\right).\)

                                                             \(\frac{1}{ac+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\left(3\right).\)

Cộng vế với vế các BĐT (1), (2) và (3) ta được :

                                     \(P\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{a+1}+\frac{b}{b+1}+\frac{1}{b+1}+\frac{c}{c+1}+\frac{1}{c+1}\right)=\frac{3}{4}.\)( đpcm )

dấu " = " xẩy ra khi a = b = c = 1 

Bình luận (0)
qqqqqqqqq
Xem chi tiết
Tran Le Khanh Linh
25 tháng 8 2020 lúc 16:41

Dễ dàng dự đoán được dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)Nhận thấy các đại lượng trong căn và mẫu đồng chưa bậc nên suy nghĩ đầu tiên là đồng bậc. Để ý đến giả thiết a+b+c=1 ta thấy \(a^2+abc=a^2\left(a+b+c\right)+abc=a\left(a+b\right)\left(a+c\right)\)

\(c+ab=a\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\)

Hoàn toàn tương tự ta có \(b^2+abc=b\left(b+a\right)\left(b+c\right);c^2+abc=c\left(c+b\right)\left(c+a\right)\)

\(b+ac=\left(a+b\right)\left(b+c\right);a+bc=\left(a+b\right)\left(b+c\right)\)

Khi đó bất đẳng thức cần chứng minh trở thành

\(\frac{\sqrt{a\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(b+c\right)}+\frac{\sqrt{b\left(b+c\right)\left(b+a\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{\sqrt{c\left(c+a\right)\left(c+b\right)}}{\left(b+a\right)\left(b+c\right)}\le\frac{1}{2\sqrt{abc}}\)

hay \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(c+b\right)}+\frac{b\sqrt{ab\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+b\right)\left(b+c\right)}}{\left(c+b\right)\left(b+a\right)}\le\frac{1}{2\sqrt{abc}}\)

Quan sát bất đẳng thức trên ta liên tưởng đến bất đẳng thức Cauchy, để ý là

\(bc\left(a+b\right)\left(a+c\right)=c\left(a+b\right)\cdot b\left(a+c\right)=b\left(a+b\right)\cdot c\left(a+c\right)\)

Trong 2 cách viết trên ta chọn cách viết thứ nhất vì khi sử dụng bất đẳng thức Cauchy dạng \(2\sqrt{xy}\le x+y\)thì không tạo ra các đại lượng có chứa các bình phương. Khi đó áp dụng bất đẳng thức Cauchy ta được

\(\sqrt{bc\left(a+b\right)\left(a+c\right)}\le\frac{b\left(a+c\right)+c\left(a+b\right)}{2}=\frac{ab+2bc+ca}{2}\)

Áp dụng tương tự ta được

  \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(c+a\right)\left(c+b\right)}+\frac{b\sqrt{ac\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+c\right)\left(b+c\right)}}{\left(b+c\right)\left(b+a\right)}\)\(\le\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\le1\)

hay \(a\left(ab+2bc+ca\right)\left(a+b\right)+b\left(b+c\right)\left(ab+bc+2ca\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Vế trái của bất đẳng thức là bậc bốn còn vế phải là bậc ba nên ta có thể đồng bậc là

\(a\left(ab+2bc+ca\right)+b\left(b+c\right)\left(ab+bc+2ac\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)

\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)\)

Triển khai và thu gọn ta được \(a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)+a^2b^2+b^2c^2+c^2a^2+5\left(a^2bc+ab^2c+abc^2\right)\)

\(\le a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)+4\left(a^2bc+ba^2c+abc^2\right)\)

hay \(abc\left(a+b+c\right)\le a^2b^2+b^2c^2+c^2a^2\), đây là một đánh giá đúng

Dấu đẳng thức xảy ra tại \(a=b=c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa